

Theoretical Interpretation of the EPR Parameters for Dy^{3+} Ion in $LuPO_4$ Crystal

Hui-Ning Dong^{a,b}, Hui-Ping Du^a, Shao-Yi Wu^{b,c}, and Peng Li^d

^a Institute of Applied Physics & College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

^d Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

Reprint requests to Dr. H.-N.D.; E-mail: donghn@163.com

Z. Naturforsch. **59a**, 765 – 768 (2004); received December 19, 2003

Based on the superposition model, in this paper the EPR parameters g_{\parallel} and g_{\perp} of Dy^{3+} , and the hyperfine structure constants A_{\parallel} and A_{\perp} of $^{161}Dy^{3+}$ and $^{163}Dy^{3+}$ in $LuPO_4$ crystal are calculated by perturbation formulas from the crystal-field theory. In the calculations, the contributions of various admixtures and interactions such as J -mixing, mixtures among states with the same J -value, two-order perturbation, covalency as well as local lattice relaxation are considered. The calculated results agree reasonably with the observed values.

Key words: Electron Paramagnetic Resonance; The Superposition Model; $LuPO_4$; Dy^{3+} .